



# Improving Allocation Performance Based Allocation and Activity Rate: What is the Choice?

Annette Loske, IFIEC Europe A.Loske@vik.de

ECCP Meeting, EU ETS Review, 21th May 2007





# The current experience:

#### EU ETS in its current form has raised fundamental challenges

### Industry strives for a way

- To solve these fundamentally
- To improve the emissions trading scheme
- To safeguard competitiveness for energy intensive manufacturing industries in the EU
- → To create a win-win-situation for both climate change and economic interests



### The major fundamental problem: the power price effect

Full pass through of CO<sub>2</sub> value is a (nearly) reality now!







- The additional costs for consumers are significant EU-wide
- But also high competition distortion for consumers within the EU
- EU consumers / EU industry hit by EU ETS much more than needed!

Most essential necessity in the review process for industry:

Reducing the power price effect to the adequate level!

Can it be done by choosing the right EU ETS design?

### **Benchmarking with the adequate basis**

# Benchmark x "X" = allowanced granted

The issue to define "X":

standard load factor

decided in advance • historic production

projected production

decided subsequently • actual production

#### Question:

Would taxes ever by based on simple forecasts / estimates?

#### Normal procedure:

- Payments based on forecast / preliminary data
- Final settlement based on corrected actual data
- Ex ante system with subsequent corrections (conditional allocation)





#### The quality of historic data / forecasts



#### ... with climate change instruments based on history?

Variations in annual load factors over five years, found in UK by NERA





### The quality of historic data / forecasts

What means a historic cap when many new plants enter the market?

Many new power plants in Italy around 2009

What means a historic cap when an economy is strongly recovering?

Growth in central Europe, e.g. Poland etc.

What means a historic cap when import or export of product changes?

- More electricity import NL from Germany Is NL then doing well?
- New CHP in Luxembourg Is Luxembourg doing bad?

#### And: the experience from the 1<sup>st</sup> period:

#### German CO<sub>2</sub>-balance 2005:

Surplus of 21 Mio t CO<sub>2</sub> allocated compared to emitted whereas:

Ex post corrections as foreseen for some parts of the system, if executed:

→ Reduction of surplus by 12 Mio t CO<sub>2</sub> to only 9 Mio t CO<sub>2</sub> i.e. by 57 percent

#### **Question:**

Would the price be below 1 €/t with an allocation based not on forecasts but on real data?

# The problems with relying on forecast data 1. High, uncompetitive power prices

#### Purely as a consequence of forecast basis

- → The opportunity cost principle applies
- → No sales below opportunity cost
- → Selling allowances is then more profitable than producing
- → Uncompetitive electricity prices in the EU



The problem is not the windfall profits!

The problem is the inadequate high costs for EU consumers / industry!

# The problems with relying on forecast data 2. Leakage / Loss of efficient production

"No sales below opportunity cost" means for most industries

→ Leakage of EU production at certain CO₂ price levels

#### **Question:**

Do we really want a system where lowering production is equally legitimate as efficiency improvements?

#### For electricity industry:

 Maybe partly acceptable, but only as direct result of efficiency improvements of consumers

#### For other industries:

- Unacceptable as result of leakage / imports / production elsewhere
- Just the cause for higher global emissions

A sound and integer emissions trading scheme must aim for efficiency!



### The problems with relying on forecast data

#### 3. Obstacles to competitive strategies for the electricity market



- > No way out of paying less than the opportunity costs mark-up
- Protecting the incumbents
- → Freezing market shares
- → No way into real competition



# The problems with relying on forecast data 4. Disadvantages for new entrants

#### **New entrants**

- a vital need for competition
- a necessity for the current electricity market

#### How to deal with new entrants based on forecast data?

- Uncertainties for new entrants (limited and exhausting reserve)
- State decision on new entrants' business / profitability by setting e.g. load factors (plan economy for competition)
- Incumbents keep old plant on stand by and keep allowances over certain period

#### **Consequences:**

- Clearly differing, unlevel playing field for incumbents vs. new entrants
- Disadvantages for new entrants
- High potential distortions in the market
- High obstacles for development of competition
- Further market concentration.



# The advantages of relying on actual data

#### The 4 problems solved!

- 1. Power prices
- Power price effect limited to actual cost
- Option not to produce but to sell is gone
- Cutting down the system's costs
- Providing for really cost efficient instrument
- Lower impact on competitiveness
- Higher attractiveness for other countries to join

- 2. Leakage
- Better competitiveness for industry
- Leakage only at extremely high CO<sub>2</sub> prices
- Negative global emissions effects diminished significantly

- 3. Hindering competitive strategies
- Competitive strategies (going for market share) supported to the benefit of whole economy

# 4. Discriminate new entrants

- No special rules for new entrants
- No special rules for closures
- Equal treatment for every player in the market

# Basing EU ETS on actual data provides for a system, that

- > stimulates efficiency improvements
- establishes a real cost-efficient instrument
- enables (extremely needed)competition in the electricity market
- makes it feasible to combine Kyoto and Lisbon



# Refute criticism against actual output basis

#### 1. Illiquidity and uncertainty of the market



A performance based system provides for:

- In-built shortages (red) and oversupply (green) of the system for installations of different efficiency
- Good and sound basis for trading and for high market liquidity

Installations' good knowledge on own efficiency and own production rate

Certainty of the players on own allowance status / ability to trade



# Refute criticism against actual output basis

#### 2. Production subsidy effect

With correct benchmarks and ex post correction incentive to use electricity efficiently is in-built.

The excessively high electricity price signal not needed.



# Refute criticism against actual output basis

3. Insecurity on meeting the cap

One way to guarantee total cap in an actual output

|              |                        | Second trading period |    |       |       |       |       |       |  |  |
|--------------|------------------------|-----------------------|----|-------|-------|-------|-------|-------|--|--|
|              |                        | 20                    | 08 | 2009  | 2010  | 2011  | 2012  | Total |  |  |
| FORECASTS    | Production fossil, TWh | 20                    | 00 | 2034  | 2069  | 2104  | 2140  | 10346 |  |  |
| at the start | Benchmark, ton CO₂/MWh | 0,6                   | 00 | 0,590 | 0,580 | 0,570 | 0,561 |       |  |  |
|              | Total cap, Mton CO₂    | 12                    | 00 | 1200  | 1200  | 1200  | 1200  | 6000  |  |  |
|              |                        | Fix                   | ed | Fixed |       |       |       |       |  |  |

Total cap to be guaranteed

#### Scenario with a higher production growth than forecasted

| _  |              |                               | · · · · · · · · · · · · · · · · · · · |       |       |        |       |       |
|----|--------------|-------------------------------|---------------------------------------|-------|-------|--------|-------|-------|
|    | Ex-post      | Update production fossil, TWh | 2030                                  | 2034  | 2069  | 2104   | 2140  | 10376 |
| ·[ | over 2008    | Ex-post, TWh                  |                                       |       | 30    | >      |       |       |
| 2  | done in 2009 | Ex-post, Mton                 |                                       |       | 18    | >      |       |       |
| ı  | to 2010      | Allocation, Mton CO2          | 1200                                  | 1200  | 1194  | > 1194 | 1194  |       |
| ľ  |              | Benchmark, ton CO2/MWh        | 0,600                                 | 0,590 | 0,577 | 0,568  | 0,558 |       |
|    |              | Total cap, Mton CO2           | 1200                                  | 1200  | 1212  | 1194   | 1194  | 6000  |
| .[ |              | Benchmark                     | Fixed                                 | Fixed | Fixed |        |       |       |

The higher production of year n is detected in year n+1 and accounted for in year n+2 acc. to the benchmark for n+1

Allocation for year n+2 is cut accordingly by spreading the excess from year n over remaining 3 years; the benchmark is adjusted accordingly.

| and so forth each year till the end of the period | d |
|---------------------------------------------------|---|
|---------------------------------------------------|---|

| stem       |              | Scenario with a hig           | her pro       | duction o | growth th | nan fore      | casted |       |               | er product                |
|------------|--------------|-------------------------------|---------------|-----------|-----------|---------------|--------|-------|---------------|---------------------------|
| s          | Ex-post      | Update production fossil, TWh |               | 0 2034    | 2069      | 2104          | 2140   | 10376 |               | in year n+ ed for in ye   |
| _          | over 2008    | Ex-post, TVVh                 |               | _         | 30        | >             |        |       |               | hmark for                 |
| <u>.</u> 2 | done in 2009 | Ex-post, Mton                 |               |           | 18        |               |        |       |               |                           |
| cation     | to 2010      | Allocation, Mton CO2          | 120           | 0 1200    | 1194      | > 1194        | 1194   |       |               | n for year                |
| ္က         |              | Benchmark, ton CO2/MVVh       | 0,60          | 0,590     | 0,577     | <b>O</b> ,568 | 0,558  |       |               | gly by spre               |
| allo       |              | Total cap, Mton CO2           | 120           | 0 1200    | 1212      | 1194          | 1194   | 6000  | ,             | r n over re<br>hmark is a |
| g<br>G     |              | Benchmark                     | Fixe          | d Fixed   | Fixed     |               |        |       | accordin      |                           |
| relate     |              | <b>Third p</b><br>2013        | eriod<br>2014 |           |           |               |        |       |               |                           |
| י כ        | Ex-post      | Update production fossil, TWh | 2030          | 3 2045    | 2130      | 2140          | 2175   | 10520 | 2190          | 2225                      |
| !          | over 2012    | Ex-post, TVVh                 |               |           | ▶ 30      | 11            | ▶61    |       | ▶ 36          | → 35                      |
| ,          | done in 2013 | Ex-post, Mton                 |               |           | 18        | 6             | 35     |       | 21            | 19                        |
|            | to 2014      | Allocation, Mton CO2          | 1200          | 1200      | 1194      | 1191          | 1155   |       | 979           | 981                       |
|            |              | Benchmark, ton CO2/MWh        | 0,600         | 0,590     | 0,577     | 0,566         | 0,540  |       | 0,447         | 0,441                     |
|            |              | Total cap, Mton CO2           | 1200          | 1200      | 1212      | 1197          | 1191   | 6000  | <b>)</b> 1016 | 1016                      |
|            |              | Benchmark                     | Fixed         | d Fixed   | Fixed     | Fixed         | Fixed  |       | Fixed         |                           |

Total cap of trading period met! Minor adjustments referred to next period.

Meeting the total cap is possible by applying adjustments of the benchmark! Higher production growth → higher scarcity (as also with auctioning)

# **Conclusions**

The proposed design solves the major problems:

#### Eliminating the disadvantages of present rules

- Uncompetitive high electricity prices
- Exporting and increasing emissions (leakage)
- Hindering competitive strategies
- Discriminating new entrants

#### Realizing the advantages of a market based instrument

- Providing for cost efficiency
- Setting the right incentives for efficiency improvements
- Guarantee of total cap

If not solving ETS' huge power price effect → there is the need to save EU energy intensive industry by additional mechanisms, which would bring discredit on EU ETS